a2 United States Patent

Kumar et al.

US009363183B2

US 9,363,183 B2
Jun. 7,2016

(10) Patent No.:
(45) Date of Patent:

(54) NETWORK ADDRESS TRANSLATION

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

OFFLOAD TO NETWORK

INFRASTRUCTURE FOR SERVICE CHAINS
IN ANETWORK ENVIRONMENT

Applicant: CISCO TECHNOLOGY, INC., San

Jose, CA (US)

Inventors:

Surendra M. Kumar, San Ramon, CA

(US); Paul Quinn, Wellesley, MA (US);
James N. Guichard, New Boston, NH
(US); Michael R. Smith, San Jose, CA

Us)

Assignee:
Jose, CA (US)

Notice:

CISCO TECHNOLOGY, INC., San

Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 17
Appl. No.: 14/249,636

Filed: Apr. 10, 2014

5 days.

Prior Publication Data

US 2015/0295831 Al

Int. Cl1.
HO4L 12/803
HO4L 29/12
HO4L 12/851
HO4L 12/54
HO4L 12/28
U.S. CL
CPC

(2013.01)
(2006.01)
(2013.01)
(2013.01)
(2006.01)

Oct. 15, 2015

HO4L 47/125 (2013.01); HO4L 612514

(2013.01); HO4L 12/28 (2013.01); HO4L 12/56
(2013.01); HO4L 47/2483 (2013.01)

Field of Classification Search
None

See application file for complete search history.

12

NETWORK
INFRASTRUCTURE

(56) References Cited
U.S. PATENT DOCUMENTS
7,305,492 B2 12/2007 Bryers et al.
7,653,745 B1* 1/2010 Biswas HO4L 29/12283
370/230
7,738,469 Bl 6/2010 Shekokar et al.
8,166,196 B2 4/2012 Nidumolu et al.
2005/0289244 Al 12/2005 Sahu et al.
2008/0177896 Al 7/2008 Quinn et al.
2012/0082073 Al* 4/2012 Andreasen HO4L 12/4633
370/310
2015/0092551 Al* 4/2015 Moisand HO4L 67/1027
370/235
2015/0281173 Al 10/2015 Quinn et al.

FOREIGN PATENT DOCUMENTS

WO
WO

WO 2013/063791
WO 2015/117642

10/2013
2/2014

*

HO4L 12/801

* cited by examiner

Primary Examiner — Kodzovi Acolatse
(74) Attorney, Agent, or Firm — Patent Capital Group

(57) ABSTRACT

An example method for network address translation (NAT)
offload to network infrastructure for service chains in a net-
work environment is provided and includes receiving a packet
atanetwork infrastructure in a network comprising a plurality
of service nodes interconnected through the network infra-
structure, each service node executing at least one service
function, identifying the packet as belonging to a first flow
based on a cookie in a network service header of the packet
that indicates a service chain that includes a sequence of
service functions to be executed on the packet at the service
nodes, determining that a service function in the service chain
is to be offloaded from one of the service nodes to the network
infrastructure for subsequent packets of the first flow, and
executing the offloaded service function at the network infra-
structure for subsequent packets of the first flow.

20 Claims, 9 Drawing Sheets

SERVICEL _

: NETWORK
NoDe® [
|
|

INFRASTRUCTURE,

SC-1a

SERVICE

nooe !
14(1)

16(1) 16(2) 16(3)

1
SERVICE
Ir

nooe? 1y
12 ||

16(5)

SERVICE
Nooe$

SERVICE

NoDE 3
14(3)

SERVICE

NoDE 4
14{4)

US 9,363,183 B2

Sheet 1 of 9

Jun. 7,2016

U.S. Patent

— =
oL (| s m_v g ||z
0l
/ /"1\ _
| |
3 300N |/ MNLONYLSYYSNIY, | 300N
0N [Ivan jos RELEE
Ll LN |
(o1)ol ~ (S)ol ()91 (g)al (€91 (@91 (a1 !
N N / / l 2/ |
i i 1 | a i _
A oL || 8 by v A 0l S, y v 3 9, S, 2 VA €, 2, by v m
|
|
/mo n A N Q /_3(Al L1 | A A N B
m/—,/_.\\\ﬂ I 1 _
L G 1 1 @ T
1 ““ m , 300N Mmoo :: | L_“ , 300N mwwﬁ_ L_“ m
|
m_ il TmES o === T s s I
1
I |] 108 !
1N _] I
I | — | — F |
AT e | |
: 1 e r-.V:_ﬁ. ||||||||||||||| - |
R R g T === 1
R | Sy .« A JUNLONYLSYHINI =5 A
FI
gl ¥ITIONINOD
gg— HLvdios 1-0S 301438

US 9,363,183 B2

Sheet 2 of 9

Jun. 7,2016

U.S. Patent

i
oL |5 || v g || 2
0l
/} /ﬂl\ _
| |
o 300N | NLONYISVEANI \ | 3AON
ROMLAN £,
J0IAY3S o m EQINES
Ll
(01)91 N ()91 () ()91 _
N N / / |
i [T - | N] I I
A oL || 8 y v A o || s by V 3 9, S, 7y X €, Z, by v m
|
N_ / N n N NN niL_1 N n M
“" W @ 7 1 @ W _: .
| |

o AN 30Ny S5 W__p g Fon oy
L TE Jonyas I >/ I 777710 qonas (T T “
i 1 ~ Lo 1 I
| | 1 I
_ _ H I "
_ | __ I “
m | m_ [“
| " Ao
gyt R

FANLONYLSVYN] Joe

HHOMLIN St 1/

gl I TIOYINOD

US 9,363,183 B2

Sheet 3 of 9

Jun. 7,2016

U.S. Patent

—
N on || 5 || € v A
,/} /\ _
| |
o ON ¢ TUNLONMLSYAINI \ | . 3CON
MHOMIAN /-
30IAY3S s | 30IAY3S

bl |
(01)1 N (9ol (Lol ()9l (€91 (@91 (191 |
\ \ / / Y
] B I] d] ™ I] |
A o || 8 3 v A 0l S, by v 3 5, 7 X €, Z, 3 v m
|
L0 b GN N | I 1 QA U oAt Il nll_of |
=< ~S— 1= — u< ~S— L1
|
O N T 1) 7 CNew o g I
o0 p3ON 300 / Jig3ON 00N m__r L_“ |
_“ | 30N 3opu3s / (~~ L= T |
I [I il | i
! | " | ! I
. ! “ HE
L ! I ! | | i
1 | | H | |
1 TC oo T B
} _ —————— Il

(S Ap TUNLONYLSVN] ozl

———————— HIOMLIN ———-=~--- L/
1 "DIA - ol H3TIOUINOD

US 9,363,183 B2

Sheet 4 of 9

T
N e m,,v 6|z
/ /_n\\ _
| |
o I0ON _{ INLONYLSYHANI | . 30ON
PN [HHOMIIN — £-2 30438
Ll
(0L)9L N (59l (L)91 (S)a1
\ / /
sl & [N V A O 11 S (| 4 v A O | BT T I X T | IR ! v
N L N N n N N A N n 9%

Jun. 7,2016

U.S. Patent

I T @ w1

| | | |
[l | 300N ¢ J0ON 'y | z 300N , J0ON HES
| “ m JOIAY3S J0IAY3S m “ | m FO0IAHIS I9AM3S _ | |
| _ | _ il |
L H | 1 I
L Hp “ ¥ I
T H “] I
.) " o
— S S S S —— o s 4L N —_ —lll_
__ | S | !
Ty gy LOMUISVEINT 5= 1,8,] | wr

———————— MUOMLIN ————x=-—-——-

dr ‘Bid .MF YITIOHLNOD
HLYdAIOS
21 08 I0IAY3S

US 9,363,183 B2

Sheet 5 of 9

Jun. 7,2016

U.S. Patent

¢ DIA
3009 pve
e ads op ¢t
XJaNI FOIAN3S H1Vd 30IAY3S
100010¥d a3AY3STY ¥ljylyluly|y|olo
l 068 .9 GS %V €T 1068 L9S¥H €T 068L9SYEZ L O

€

4 l

_
0

U.S. Patent Jun. 7, 2016 Sheet 6 of 9 US 9,363,183 B2

s 2
N 36
30 NETWORK
INFRASTRUCTURE
CURNEN: £ s
A [40~] procESSOR]
SERVICE NODE L - '
fl 2 3; 421" MEMORY ELEMENT 27
77 fmmmmm——————— ;
16(1) 16(2) | 2 |
14(2) : 44~ NHS COOKIE :
\ : MODULE ,
SERVICE NODE | |
I SERVICE I
ol L A I 461 CHAIN-FLOW I
° : ASSOCIATOR :
14(N) : o] NSHOFFLOD |
\ | 4 MODULE ,
SERVICE NODE 7 Le—_—— = J
M 1 50| SERVICE MODULES —|
/ |
16(M) i

FIG. 3

U.S. Patent Jun. 7, 2016 Sheet 7 of 9 US 9,363,183 B2

100

N

102~ RECEIVE PACKET
114
/
IDENTIFY
FLOW SEEN SERVICE CHAIN
PREVIOUSLY? ASSOCIATED
WITH COOKIE

GENERATE COOKIE ASSOCIATING
106" SERVICE CHAIN WITH FLOW

'

108 -1 INSERT COOKIE IN NSH

!

110~ INITIALIZE OFFLOAD BIT IN NSH

!

TRANSMIT PACKET TO NEXT
112-"| SERVICE NODE ON SERVICE CHAIN

»
FIG. 4

RECEIVE PACKET WITH NSH | ~122
EXECUTE TRANSFORMATIVE | ~124
SERVICE FUNCTION

SET OFFLOAD BIT IN NSH TO OFFLOAD
TO NETWORK INFRASTRUCTURE ™~ 126

!

TRANSMIT TO NETWORK
INFRASTRUCTURE ™-128

FIG. 5

U.S. Patent Jun. 7, 2016 Sheet 8 of 9 US 9,363,183 B2

130

(START)

\ J
132~ RECEIVE INBOUND
PACKET WITH NSH

Y
134~ IDENTIFY COOKIE IN NSH

\ J
136~ ASSOCIATE FLOW WITH
SERVICE CHAIN

EXECUTE
TRANSFORMATIVE SERVICE
FUNCTION?

Y
EXECUTE OFFLOADED INTERPRET OFFLOAD
142" TRANSFORMATIVE BIT IN NSH 144
SERVICE FUNCTION

\ A

TRANSMIT PACKET TO
146" NEXT SERVICE NODE IN
SERVICE CHAIN

Y

C END)
FIG. 6

U.S. Patent Jun. 7, 2016 Sheet 9 of 9 US 9,363,183 B2

WHEN TRAFFIC PASSES THROUGH NETWORK
INFRASTRUCTURE POST SERVICE DELIVERY,
152 ~| NETWORK INFRASTRUCTURE CAN CORRELATE FLOW
ASSOCIATED WITH PACKET TO OBSERVED FLOW
PRIOR TO STEERING TRAFFIC TO SERVICE NODE AND
CORRELATE IT TO SERVICE CHAIN FOR THAT FLOW

!

154 RE-CLASSIFICATION OF TRAFFIC IS NOT
™ NECESSARY, AVOIDING STARTING ANOTHER
CHAIN FOR SERVICING TRANSFORMED FLOW

!

156 TO OFFLOAD SERVICE FUNCTION, SERVICE
™ NODE SETS 'O’ BIT AND OPTIONALLY
SPECIFIES SERVICE FUNCTION

!

NETWORK CAN AUTOMATICALLY
1581 DETECT TRANSFORMATION ON FLOW
BASED ON COOKIE CORRELATION

!

NETWORK INFRASTRUCTURE UPDATES
FLOW STATE TO MARK FLOW AS REQUIRING
160-"] TRANSFORMATIVE SERVICE FUNCTION IN NETWORK
INFRASTRUCTURE AND NOT AT SERVICE NODE

!

SERVICE NODES MAY REQUEST OFFLOAD OF
162" NON-TRANSFORMATIVE SERVICE FUNCTIONS

!

WHEN ALL SERVICE FUNCTIONS AT SERVICE NODE
164" ARE OFFLOADED, NETWORK INFRASTRUCTURE NO
LONGER STEERS TRAFFIC TO SERVICE NODE

!

OPTIMAL SERVICE PATH SAVING LATENCIES FROM
NOT STEERING THE TRAFFIC TO SERVICE NODES;
166" NETWORK INFRASTRUCTURE CAN IMPLEMENT
SERVICE FUNCTIONS IN A SPECIALIZED MANNER,
INCLUDING IMPLEMENTATION IN HARDWARE

FIG. 7

150

US 9,363,183 B2

1
NETWORK ADDRESS TRANSLATION
OFFLOAD TO NETWORK
INFRASTRUCTURE FOR SERVICE CHAINS
IN A NETWORK ENVIRONMENT

TECHNICAL FIELD

This disclosure relates in general to the field of communi-
cations and, more particularly, to network address translation
(NAT) offload to network infrastructure for service chains in
a network environment.

BACKGROUND

Data centers are increasingly used by enterprises for effec-
tive collaboration, interaction, and storing data/resources. A
typical data center network contains myriad network ele-
ments, including hosts, load balancers, routers, switches, etc.
The network connecting the network elements provides
secure user access to data center services and an infrastructure
for deployment, interconnection, and aggregation of shared
resource as required, including applications, hosts, appli-
ances, and storage. Improving operational efficiency and
optimizing utilization of resources in data centers are some of
the challenges facing data center managers. Data center man-
agers want a resilient infrastructure that consistently supports
diverse applications and services and protects the applica-
tions and services against disruptions. A properly planned and
operating data center network provides application and data
integrity and optimizes application availability and perfor-
mance.

BRIEF DESCRIPTION OF THE DRAWINGS

To provide a more complete understanding of the present
disclosure and features and advantages thereof, reference is
made to the following description, taken in conjunction with
the accompanying figures, wherein like reference numerals
represent like parts, in which:

FIG. 1A is a simplified block diagram illustrating commu-
nication system for NAT offload to network infrastructure for
service chains in a network environment according to an
example embodiment;

FIG. 1B is a simplified block diagram illustrating example
details of an embodiment of the communication system;

FIG. 1C is a simplified block diagram illustrating other
example details of an embodiment of the communication
system,

FIG. 1D is a simplified block diagram illustrating yet other
example details of an embodiment of the communication
system,

FIG. 2 is a simplified block diagram illustrating yet other
example details of embodiments of the communication sys-
tem;

FIG. 3 is a simplified block diagram illustrating yet other
example details of embodiments of the communication sys-
tem;

FIG. 4 is a simplified flow diagram illustrating example
operations that may be associated with an embodiment of the
communication system;

FIG. 5 is a simplified flow diagram illustrating other
example operations that may be associated with an embodi-
ment of the communication system;

FIG. 6 is a simplified flow diagram illustrating yet other
example operations that may be associated with an embodi-
ment of the communication system; and

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 7 is a simplified flow diagram illustrating yet other
example operations that may be associated with an embodi-
ment of the communication system.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

Overview

An example method for NAT offload to network infrastruc-
ture for service chains in a network environment is provided
and includes receiving a packet at a network infrastructure in
a network comprising a plurality of service nodes intercon-
nected through the network infrastructure, each service node
executing at least one service function, identifying the packet
as belonging to a first flow based on a cookie in a network
service header (NSH) of the packet that indicates a service
chain, which includes a sequence of service functions to be
executed on the packet at the service nodes, where a flow tuple
of the packet indicates a different second flow, determining
that a service function in the service chain is to be offloaded
from one of the service nodes to the network infrastructure for
subsequent packets of the first flow, and executing the off-
loaded service function at the network infrastructure for sub-
sequent packets of the first flow.

As used herein, the term “network infrastructure” com-
prises hardware and software resources of a network that
enable network connectivity, communication, operations,
and management of the network. The network infrastructure
provides communication paths between users, processes,
applications, services, and external networks (e.g., the Inter-
net). A typical network infrastructure includes networking
hardware such as routers, switches, local area network (LAN)
cards, wireless routers, cables, etc.; and networking software,
such as network operations and management (e.g., control
plane configurations), operating systems, etc. In some
embodiments, the network infrastructure may comprise dis-
tributed virtual switches, which include software constructs
providing switching/routing capabilities.

Example Embodiments

Turning to FIGS. 1A-1D, FIGS. 1A-1D are simplified
block diagrams illustrating a communication system 10 for
service node originated service chains in a network environ-
ment in accordance with one example embodiment. FIG. 1A
illustrates a network 11 comprising a service controller 12,
and a plurality of service nodes 14(1)-14(4). A plurality of
service functions 16(1)-16(10) may be instantiated on (and
thereby associated with) service nodes 14(1)-14(4). For
example, service functions 16(1)-16(3) may be instantiated
on service node 14(1); service functions 16(4)-16(7) may be
instantiated on service node 14(2); and so on.

Service controller 12 may specify that certain network
traffic (e.g., data traversing the network, usually formatted
into packets, a sequence of which comprise flows) to follow
specific service chains according to various service charac-
teristics (e.g., a specific tuple of fields in Ethernet, Internet
Protocol (IP), Transmission Control Protocol (TCP), hyper-
text transfer protocol (HTTP) headers, etc.) or service poli-
cies (e.g., access ports, quality of service, etc.)). An example
service chain 18 is illustrated in the figure as comprising
service functions 16(1), 16(2) (at service node 14(1)); 16(5),
16(7) (at service node 14(2)); 16(5) (at service node 14(3));
and 16(10) (at service node 14(4)) in that specific order
(f1=R—-5—-{7—-15—-110).

US 9,363,183 B2

3

In some embodiments, flows (e.g., a flow is a sequence of
packets from a source network node to a destination network
node, and is identified by a unique flow tuple (e.g., source IP
address, destination IP address, source port address, destina-
tion port address, protocol)) arriving in network 11 may be
classified at a classifier using a locally instantiated policy and
customer or network or service profile matching of flows to
service chains for identification of appropriate outbound for-
warding actions. Note that the flow identification can com-
prise a five tuple in its finest granularity or a subset of itin a
coarser case. The classifier may create a service path (e.g., a
path that flows are forwarded through in a service chain)
comprising service nodes 14(1)-14(4) that together execute
service functions 16(1)-16(10) comprising service chain 18
on packets belonging to the classified flow.

As used herein, the term “service function” refers to a
logical entity (e.g., software code) executing in a network
element that can provide one or more service functions such
as firewall, Deep Packet Inspection (DPI), Lawful Intercept
(LI), encapsulation/decapsulation, NAT, etc. for packets (or
frames in Layer 2 of the Open Systems Interconnect (OSI)
network model) traversing the network. Some service func-
tions may be computation intensive. A “service chain” com-
prises a sequence of a plurality of service functions chained
together in a specific order to provide a composite service to
packets traversing the network. In a general sense, packets
belonging to a specific flow are processed according to a
specific service chain.

Asused herein, the term “service node” comprises a physi-
cal or virtual network element that can be reached over the
network using a unique address (e.g., Internet Protocol (IP)
address) associated therewith, and that can provide one or
more service functions to packets traversing the network. As
used herein, the term “network element” is meant to encom-
pass computers, network appliances, servers, routers,
switches, gateways, bridges, load balancers, intrusion detec-
tion appliances, processors, modules, or any other suitable
device, component, element, or object operable to exchange
information in a network environment. Moreover, the net-
work elements may include any suitable hardware, software,
components, modules, interfaces, or objects that facilitate the
operations thereof. This may be inclusive of appropriate algo-
rithms and communication protocols that allow for the effec-
tive exchange of data or information. Fach service node
14(1)-14(4) forwards packets to service functions 16(1)-16
(10) associated with the respective service node in service
chain 18. Service nodes 14(1)-14(4) can also provide map-
ping, insertion, and removal of header(s) in packets.

Network infrastructure 20 may provide traditional trans-
port (e.g., routing and switching) capability for the service
chains (e.g., service chain 18). Interconnections between ser-
vice functions 16(1)-16(10) and their service nodes 14(1)-14
(4), and between service nodes 14(1)-14(4) can be a physical
or logical link or a network path, which may be an Ethernet,
Internet Protocol (IP), Multiprotocol Label Switching
(MPLS) or other suitable network protocol underlay network
provided in network infrastructure 20. In some embodiments,
for example, as illustrated in the figure, network infrastruc-
ture 20 may comprise a service chain intelligence (SCI) mod-
ule comprising, for example, Cisco™ vPath [architecture] 22.
Network infrastructure 20 may also provide an overlay trans-
port mechanism, for example, for forwarding packets
between service nodes 14(1)-14(4).

Note that network infrastructure 20 can be differentiated
from the rest of network 11 based on its location (e.g., rel-
evance, significance, function, capacity, situation, position,
etc.) in network traffic flow patterns: network infrastructure

10

15

20

25

30

35

40

45

50

55

60

65

4

20 is typically not an addressable end point in network 11;
packets are delivered from and to end points, such as service
nodes 14(1)-14(4) through (e.g., via, over, by way of, by, etc.)
network infrastructure 20. Thus, whereas service nodes
14(1)-14(4) may be addressable, for example, by IP
addresses, network infrastructure 20 may not be an endpoint
of a packet’s journey through network 11, and may not be
addressable in that regard.

According to various embodiments, network infrastructure
20 can detect NAT transformations performed in service
nodes 14(1)-14(4) based at least on a cookie 24 in a network
service header (NSH) 30. As used herein, the term “cookie”
comprises a string of numerals and/or letters indicating a
specific flow in network 11. NSH 30 may comprise a service
header on an overlay network inserted over and above each
packet’s network headers. Thus, NSH 30 is different from the
packet’s network headers, such as [P header, transport header,
etc. In a general sense, NSH 30 comprises a data plane header
added to frames/packets; NSH 30 includes information
required for service chaining, and metadata added and con-
sumed by network nodes (e.g., network infrastructure 20) and
service nodes (e.g., 14(1)-14(4)). NSH 30 serves to create the
service overlay (e.g., service plane) in network 11 for for-
warding packets between service nodes 14(1)-14(4).

As used herein, “NAT” refers to any transformative service
function that modifies (e.g., transforms, changes, rewrite,
etc.) the packet’s network header or values therein, wherein
packets belonging to a specific flow characterized by a unique
flow-tuple (e.g., source IP address, source port address, pro-
tocol, destination IP address, destination port address) in the
packet’s network header cannot be recognized as belonging
to the specific flow after the transformative function is applied
on the packet. Note that NAT does not change NSH 30.

For example, service function 16(7) may comprise a NAT
function; network infrastructure 20 may detect NAT transfor-
mations performed at service function 16(7) in service node
14(2). The detection in network infrastructure 20 can serve to
bypass service function 16(7) (and possibly service node
14(2)) while preserving the NAT transformation. Embodi-
ments of communication system 10 facilitate offloading the
NAT function on the packet of a specific flow to network
infrastructure 20 without requiring any explicit message, pre-
configuration, or other instruction specifying the NAT trans-
formation.

For purposes of illustrating the techniques of communica-
tion system 10, it is important to understand the communica-
tions that may be traversing the system shown in FIG. 1. The
following foundational information may be viewed as a basis
from which the present disclosure may be properly explained.
Such information is offered earnestly for purposes of expla-
nation only and, accordingly, should not be construed in any
way to limit the broad scope of the present disclosure and its
potential applications.

Network services are widely deployed and essential in
many networks. The services can provide a range of functions
such as security, wide area network (WAN) acceleration, and
server load balancing. Services that form part of an overall
composite service may be physically located at different
points in the network infrastructure, such as the wide area
network, data center, enterprise, campus, etc. For some net-
work services, traffic is forwarded through a sequence of
nodes providing service functions. Forwarding traffic along a
sequence of service functions is typically based on service
characteristics. For example, certain traffic may be directed to
a domain border gateway for monitoring and charging; cer-
tain other traffic may be steered through a load balancer to
distribute performance pressure before forwarding to data

US 9,363,183 B2

5

center services; mobile network operators may split mobile
broadband traffic and steer them along different offloading
paths; firewalls may be used to filter traffic for Intrusion
Detection System (IDS)/Intrusion Protection System (IPS);
security gateways may be used to encrypt/decrypt traffic;
certain traffic that traverses different network technology seg-
ments such as [IPv4/IPv6 may be directed to a carrier grade
network address translator (CGNAT); etc.

In some network architectures (e.g., Cisco™ Distributed
Virtual Switch (DVS)), vPath™ integrates services with the
network. vPath enables traffic redirection, service chaining
and infrastructure programmability. Service chaining refers
to a model for delivering multiple service functions in a
specific order comprising the service chain. Service chaining
de-couples service delivery from the underlying network
infrastructure and creates a services plane that can address
requirements of cloud and virtual application delivery. Pack-
ets and/or flows that require services to be applied are classi-
fied and redirected to the appropriate service functions. Addi-
tionally, context can be shared between the network
infrastructure and the service nodes implementing the service
functions. Service chain architecture further enables modu-
larity of network operations; service functions can be split
and chained together to compose complicated services.

vPath™ comprises a distributed service data path, a service
traffic classifier, and service enforcement point. vPath inter-
cepts traffic in the switch data plane in both directions (that is,
both ingress and egress flows). vPath maintains four types of
tables to classify and redirect traffic flows to enforce service
policies: (1) service table: determines services to be delivered
for the type of traffic; (2) service node table: defines service
nodes activated in service path; (3) path table: orchestrates
multiple service delivery in particular order for the same flow;
(4) flow table: tracks the state of each flow. vPath is flow
aware and programs flow entries in its flow table for all the
intercepted flows, and redirects flows to service nodes defined
in service path.

vPath uses a service overlay to steer traffic to the service
nodes. A vPath 3.0 service header (e.g., NSH 30) is used as an
encapsulation header to carry a forwarding state identifica-
tion (e.g., service-path-identifier and a service-index). The
service header can uniquely identify a particular service chain
and location of the packet carrying the service header within
the service chain at any given time. The service header can
facilitate determining a next hop service function when used
in conjunction with a service-forwarding table, which repre-
sents a forwarding state at the service nodes. In such network
architectures, the classifier imposes the service header (e.g.,
NSH 30) on the selected flow and initializes the service path-
identifier and the service-index in the service header. After
each service delivery, the service index is decremented at the
service node to indicate service delivery.

Insome network architectures, the service chains are speci-
fied by a network operator in the service controller (e.g., 12)
external to the service nodes. The service controller resolves
service chain identifiers to corresponding forwarding states in
the network identified by respective service-path-identifiers.
The service controller distributes the forwarding states and
the corresponding service-path-identifiers identifiers across
the network infrastructure via proprietary control protocols or
standard protocols like border gateway protocol (BGP). Net-
work elements (such as the switches and routers) acting as the
classifiers select and classify flows to be forwarded along
various service chains. Note that the service chaining and
other service overlay functions are performed on a per-flow
basis; thus, each flow is typically subject to a specific service
chain.

10

15

20

25

30

35

40

45

50

55

60

65

6

NAT is a commonly used service function in service nodes
such as Server Load Balancers (SLB), firewalls, etc. NAT
serves to conserve the IP addresses, maintain traffic affinity,
and enforce security, among other uses. NAT may be used to
map each address of one address space to a corresponding
address in another space; NAT may also be used in conjunc-
tion with network masquerading (or IP masquerading) to hide
an entire IP address space, usually consisting of (hidden)
network [P addresses behind a single IP address in another,
(usually public) address space. NAT function is typically
performed using stateful translation tables to map the hidden
addresses into a single IP address and to readdress the outgo-
ing IP packets on exit so they appear to originate from a
routing device at the network edge. In the reverse communi-
cations path, responses are mapped back to the originating IP
addresses using rules (e.g., state) stored in the translation
tables.

NAT poses many challenges to the service chaining archi-
tecture. For example, the network infrastructure cannot relate
the service chain to the flow after the NAT transformation,
because NAT changes the flow tuple, including the service
characteristics. Therefore, the service chain has to be broken
at the point of NAT, because service chains are configured
according to flows, with each classified flow being processed
according to a corresponding service chain. In other words, a
new service chain has to be initiated after NAT is performed,
from either within the service node or from the network
infrastructure.

For example, consider service chain 18. The portion of
service chain 18 up to and including service function 16(7),
which comprises the NAT function, may be referred to as
SC-1a. Packets of flow F1 serviced on service chain SC-1a
may include a specific network header with a particular flow
tuple (e.g., combination of header values such as source IP
address, source port address, protocol, destination IP address,
destination port address) that characterizes the packet as
belonging to a specific flow. After service function 16(7)
processes the packet belonging to the flow F1, the header
values may change. Network infrastructure 20 can no longer
recognize the packet as belonging to flow F1, because the
network header, and thereby the flow tuple, has changed post
NAT. Consequently, service chain SC-1a may be broken at
service function 16(7) and a new service chain SC-15 may be
created to continue processing the packets on the overlay
network.

Further, NAT in a service node requires the flows to be
always steered through the service node as the NAT function
is based on a policy specific to the service node. The policy
may specify the changes to be made to the network header as
part of the NAT. In many cases, once the NAT policy is
determined, the NAT transformation is unchanged for the life
of the flow. In other words, there is no additional value deliv-
ered by the service node apart from applying the transforma-
tion; however, every packet of the flow must be steered to the
service node, incurring additional costs.

Communication system 10 is configured to address these
issues (among others) in offering a system and method for
NAT offload to network infrastructure for service chains in a
network environment. According to various embodiments,
during configuration, service controller 12 may configure
service chain 18 in network 11 for packets of a specific flow.
During operation, network infrastructure 20 may receive a
packet belonging to the specific flow. The specific flow may
be identified by its unique flow tuple (e.g., source IP address,
destination IP address, source port address, destination port
address, protocol) determined from the packet’s network
header. If the specific flow has not been previously seen in

US 9,363,183 B2

7

network 11 (e.g., the packet is an initial packet of the flow),
network infrastructure 20 may generate cookie 24 associating
service chain 18 with the specific flow.

Network infrastructure 20 may insert the cookie in NSH 30
of the packet, and initialize an “offload bit” in NSH 30. The
offload bit represents an instruction to offload the specific
service function that was performed (if any) to network infra-
structure 20. When initialized or reset, the offload bit indi-
cates no offloading; when set, the offload bit indicates oft-
loading. NSH 30 may also include a service function
identifier, identifying the specific service function to be oft-
loaded. Network infrastructure 20 may also initialize the ser-
vice function identifier (SF ID) in NSH 30. The packet may be
transmitted to the next service node 14(1) according to ser-
vice chain 18.

The packet may continue in network 11 along various
service nodes (e.g., service node 14(2)) until it reaches NAT
function 16(7). NAT function 16(7) may perform NAT on the
packet, and set the offload bit to indicate offloading to net-
work infrastructure 20. During the NAT transformation, the
unique flow tuple of the specific flow may be changed to a
different flow tuple, for example, due to changes in the source
IP address, destination IP address, etc.

When network infrastructure 20 receives the packet, net-
work infrastructure 20 may identify the packet as belonging
to the specific flow based on cookie 24 in NSH 30, even
though the packet’s transformed flow tuple indicates a differ-
ent flow. In some embodiments, the identification may be
based on the previously made association of cookie 24 with
the specific flow and service chain 18. Moreover, comparison
of the previous flow tuple (before NAT transformation) and
the current flow tuple (after NAT transformation) may also
indicate the flow tuple change made by NAT function 16(7).
Thus, network infrastructure 20 may learn the NAT policy of
service function 16(7). Based on the offload bit setting (indi-
cating offload to network infrastructure 20), network infra-
structure 20 may prepare to execute the NAT function on
subsequent packets of the specific flow. Because the NAT
function has already been performed on the packet, network
infrastructure 20 may forward the packet to the next service
node 14(3).

Turning to FIG. 1B, when a subsequent packet in the spe-
cific flow arrives at network infrastructure 20, NAT service
function 16(7) may be offloaded to network infrastructure 20
automatically. Network infrastructure 20 may execute the
NAT transformation on the subsequent packet, the NAT trans-
formation having been learnt from the previous packet, with-
out further instruction from service controller 12, or any other
intervention; and transmit the packet to next service node
14(3) instead of sending the packet to service node 14(2) for
executing the NAT function.

Turning to FIG. 1C, in some embodiments, substantially
all service functions (e.g., 16(5), 16(7)) in service chain 18
performed for the specific flow by the service node (e.g.,
14(2)) performing the NAT function may be offloaded to
network infrastructure 20, if such capabilities exist in net-
work infrastructure 20. For example, service function 16(5)
may set an offload bit and a SF ID to indicate offloading to
network infrastructure 20 for a first packet of the specific flow.
Network infrastructure 20 may execute the offloaded func-
tions for subsequent packets of the specific flow. Turning to
FIG. 1D, thereafter, service node 14(2) may be bypassed
completely for the specific flow without any intervention
from service controller 12 or other network managing entity.

In another example embodiment, a sample service chain
SC1 may be represented as SC1=S1:S2 (NAT):S3 where SC1
is a service chain with service nodes S1, S2, and S3. Service

10

15

20

25

30

35

40

45

50

55

60

65

8

node S1 14(1) acts as a classifier that imposes the service
chain SC1 on selected flows based on policies preconfigured
at service node S1 14(1) by service controller 12. Service
node S2 14(2) applies the NAT service function to the
selected flows. Service nodes S1 14(1), S2 14(2), and S3
14(3) may be virtual or physical nodes in the virtual or physi-
cal access layer of network 11.

A top-of-rack (ToR) switch or a Distributed Virtual Switch
(DVS) or any other network element of network infrastruc-
ture 20 that is part of the service chaining infrastructure may
be responsible for forwarding packets to service nodes S1
14(1), S2 14(2) and S3 14(3) with NSHs added to the packets
on a service overlay. In other words, the ToR/DVS are logi-
cally adjacent to service nodes S1 14(1), S2 14(2), and S3
14(3). The ToR/DVS participating in the service chaining
may insert cookie 24 into NSH 30 prior to steering the flows
to service nodes S1 14(1), S2 14(2), and S3 14(3). Substan-
tially simultaneously, ToR/DVS may maintain a flow state
that includes the flow specification (e.g., S-tuple) and service
chain information. Cookie 24 inserted into NSH 30 can iden-
tify the flow in the ToR/DVS. Thus, when the packet that is
treated with NAT by service node S2 14(2) is received back at
the ToR/DVS, cookie 24 (unchanged by service node S2) can
identify the flow-state prior to the NAT transformation. The
flow specification or the packet header post servicing reveals
the transformation of the packet with respect to the prior flow
state. Cookie 24 thus ties the flow states before and after NAT
execution. The ToR/DVS can confirm that NAT has indeed
occurred inspecting the packet transformation and cookie 24.

According to various embodiments, service nodes 14(1)-
14(4) can use bits in NSH 30 to signal the flow to be offloaded
to network infrastructure 20. After a service node (e.g., 14(2))
treats the incoming packet with NAT and any additional ser-
vice functions, it can set one or more offload bits in NSH 30
to request network infrastructure 20 to not steer packets of the
flow to service node 14(2). Network infrastructure 20, having
detected the NAT transformation on the packets of the flow,
can bypass service node 14(2) for subsequent packets of the
flow and perform the NAT transformation locally in network
infrastructure 20, thereby potentially avoiding additional
latencies incurred in steering the flows to service node 14(2)
for NAT and compute resource consumption.

Embodiments of communication system 10 can enable
within network infrastructure 20, automatic detection of NAT
transformations performed in service nodes 14(1)-14(4).
NAT offload to network infrastructure 20 may be facilitated
without the explicit specification of the NAT transformation.
Service chains (e.g., 18) can extend or span across NAT
service functions without breaking into portions before and
after NAT transformation, (e.g., SC-1a and SC-15). Oftload-
ing to network infrastructure 20 can potentially remove tran-
sit latencies involved in the steering the flows to service nodes
(e.g., 14(2)) to perform NAT. Further benefits can be achieved
from the optimized implementation of NAT, including in
hardware, to achieve enhanced network performance (e.g.,
ToR/DVS performance).

Turning to the infrastructure of communication system 10,
the network topology can include any number of servers,
hardware accelerators, virtual machines, switches (including
distributed virtual switches), routers, and other nodes inter-
connected to form a large and complex network. A node may
be any electronic device, client, server, peer, service, appli-
cation, or other object capable of sending, receiving, or for-
warding information over communications channels in a net-
work. Elements of FIG. 1 may be coupled to one another
through one or more interfaces employing any suitable con-
nection (wired or wireless), which provides a viable pathway

US 9,363,183 B2

9

for electronic communications. Additionally, any one or more
of these elements may be combined or removed from the
architecture based on particular configuration needs.

Communication system 10 may include a configuration
capable of TCP/IP communications for the electronic trans-
mission or reception of data packets in a network. Commu-
nication system 10 may also operate in conjunction with a
User Datagram Protocol/Internet Protocol (UDP/IP) or any
other suitable protocol, where appropriate and based on par-
ticular needs. In addition, gateways, routers, switches, and
any other suitable nodes (physical or virtual) may be used to
facilitate electronic communication between various nodes in
the network.

Note that the numerical and letter designations assigned to
the elements of FIG. 1 do not connote any type of hierarchy;
the designations are arbitrary and have been used for purposes
of teaching only. Such designations should not be construed
in any way to limit their capabilities, functionalities, or appli-
cations in the potential environments that may benefit from
the features of communication system 10. It should be under-
stood that communication system 10 shown in FIG. 1 is
simplified for ease of illustration.

The example network environment may be configured over
a physical infrastructure that may include one or more net-
works and, further, may be configured in any form including,
but not limited to, local area networks (ILANs), wireless local
area networks (WLANs), VLANs, metropolitan area net-
works (MANs), VPNs, Intranet, Extranet, any other appro-
priate architecture or system, or any combination thereof that
facilitates communications in a network. The example net-
work environment of home network 17 may be configured
over a physical infrastructure that may include WL AN (in-
cluding Bluetooth), and wired LANs.

In some embodiments, a communication link may repre-
sent any electronic link supporting a LAN environment such
as, for example, cable, Ethernet, wireless technologies (e.g.,
IEEE 802.11x), ATM, fiber optics, etc. or any suitable com-
bination thereof. In other embodiments, communication links
may represent a remote connection through any appropriate
medium (e.g., digital subscriber lines (DSL), telephone lines,
T1 lines, T3 lines, wireless, satellite, fiber optics, cable, Eth-
ernet, etc. or any combination thereof) and/or through any
additional networks such as a wide area networks (e.g., the
Internet).

In various embodiments, service controller 12, service
nodes 14(1)-14(4), and service functions 16(1)-16(10) may
be implemented as applications executing in separate standa-
lone network elements, or as a combination in one or more
network elements (e.g., service controller 12 executing in one
network element, and service nodes 14(1)-14(4) (and associ-
ated service functions) executing in a separate network ele-
ment; and other such combinations). Service controller 12
may comprise a management plane responsible for orches-
tration, management, and control of virtual network services
in network 11. For example, service nodes 14(1)-14(N) can
comprise physical service appliances (e.g., stand-alone
boxes) plugged into network 11 appropriately. In another
example, service nodes 14(1)-14(4) can comprise service
cards attached internally within another network element,
such as a router or switch in network 11. In yet another
example, service nodes 14(1)-14(4) can comprise applica-
tions executing on one or more servers in network 11. In some
embodiments, service nodes 14(1)-14(4) can comprise a
combination of the above. Further, they may be implemented
as software modules running in a data center, in clouds or as
standalone physical equipment.

10

15

20

25

30

35

40

45

50

55

60

10

Note that when service functions 16(1)-16(10) are off-
loaded to network infrastructure 20, they no longer require
separate addressing. For example, a switch comprising net-
work infrastructure 20 may perform firewall services within
the switch without requiring separate addressing for the fire-
wall services. In contrast, when the switch is configured with
a line card having a separate address that performs firewall
services, the line card may comprise a service node separate
from the switch-network infrastructure.

In various embodiments, service functions 16(1)-16(10),
service controller 12, and service nodes 14(1)-14(4) may be
connected in network 11 over a distributed virtual switch,
which can include physical and virtual switches and any
suitable network element capable of receiving and forward-
ing packets appropriately in a network environment. Any
number of service functions and service nodes may be active
within network 11 within the broad scope of the embodi-
ments.

In various embodiments, network infrastructure 20 can
comprise one or more network elements that in combination
perform the operations described herein. For example, the
cookie association with the flow when the flow is first seen in
network 11 can be performed at one ToR, and advertised in
network 11 to other ToRs in network 11. Substantially all
ToRs may store the cookie association with the flow locally.
Subsequently, packets reaching any of the other ToRs after
NAT transformation may be recognized based on the stored
association. The offloaded NAT function may be executed by
yet another ToR, and so on. In other embodiments, substan-
tially all operations of network infrastructure 20 may be per-
formed by a single network element. For example, substan-
tially all packets of the flow from ingress into network 11 to
egress out of network 11 may be handled by a single ToR,
which stores the cookie-flow association and executes the
offloaded NAT function.

In various embodiments, network infrastructure 20 may
include a DVS with SCI-vPath 22 embedded therein. vPath
architecture supports virtualized network services with intel-
ligent traffic steering and performance acceleration. In some
embodiments, vPath may provide embedded intelligence
within Cisco Nexus 1000V Series Virtual Ethernet Modules
(VEMs) to dynamically apply multiple services to virtual
machine (VM) traffic. vPath communicates with service
nodes 14(1)-14(4) over tunnels, decoupling service nodes
14(1)-14(4) from network infrastructure 20. The Cisco vPath
architecture provides a forwarding-plane abstraction and a
programmable framework for inserting or removing service
functions 16(1)-16(10) at a hypervisor layer.

Turning to FIG. 2, FIG. 2 is a simplified block diagram
illustrating example details of another embodiment of com-
munication system 10. Example NSH 30 may include cookie
24, an offload bit 32, and a service identifier (SF ID) 34
identifying the specific service to be offloaded (or not)
according to offload bit 32. Each service function may rewrite
NSH 30 with its own SF ID and network infrastructure 20
may track the various service functions that request offload-
ing. NSH 30 may include a plurality of SF IDs associated with
a corresponding plurality of service functions to indicate
simultaneous offload of the plurality of service functions.
Note that the particular example NSH 30 provided herein is
merely for example purposes; any suitable format may be
used for NSH 30 within the broad scope of the embodiments.

Turning to FIG. 3, FIG. 3 is a simplified block diagram
illustrating example details of another embodiment of com-
munication system 10. A plurality of service nodes 14(1)-14
(N) may be connected to example network infrastructure 20
over network 11, where N is any integer greater than or equal

US 9,363,183 B2

11

to 1. Fach service node 14(1)-14(N) may be identified and
addressed by a unique address (e.g., IP address) within net-
work 11. Each service node 14(1)-14(N) may execute one or
more service functions 16(1)-16(M), where M is any integer
greater than or equal to 1. For example, service node 14(1)
may execute service functions 16(1) and 16(2); service node
14(N) may execute service function 16(M); and so on.
Assume, merely for example purposes that service function
16(1) comprises NAT.

Example network infrastructure 20 may receive packets
(e.g., packet 36) from service nodes 14(1)-14(N) in network
11. Example packet 36 may include a payload 37, a network
header 38, and NSH 30. Network infrastructure 20 may
include a processor 40, a memory element 42, a NSH cookie
module 44, a service chain-flow associator 46, a NSH offload
module 48, and one or more service modules 50. In particular,
at least one of service module 50 may include capability to
perform NAT. In certain embodiments, network infrastruc-
ture 20 includes a DVS, SCI-vPath 22 may incorporate NSH
cookie module 44, service chain-flow associator 46, and NSH
offload module 48.

During operation, network infrastructure 20 may receive
packet 36 (e.g., from outside network 11). Network infra-
structure 20 may determine that packet 36 has not been pre-
viously seen. Network infrastructure 20 may generate NSH
30; NSH module 44 may generate cookie 24 associated with
the flow of packet 36 and insert cookie 24 into NSH 30; and
service chain-flow associator 46 may associate cookie 24
with the service chain and flow of packet 36 (e.g., generate a
table associating cookie with the 5 tuple of the flow obtained
from network header 38). Network infrastructure 20 may
determine (e.g., based on flow table, service chain configu-
ration, and other criteria) that packet 36 is to be forwarded to
service node 14(1) for performing service functions 16(1) and
16(2). Network infrastructure 20 may insert NSH 30 (com-
prising cookie 24) in packet 36, and forward packet 36 to
service node 14(1). Network infrastructure 20 may store a
flow state (e.g., flow tuple) identifying the flow.

Service function 16(1) may execute the NAT transforma-
tion on packet 36 and transform network header 38 according
to pre-configured NAT policies on service node 14(1). Ser-
vice function 16(1) may also set the offload bit in NSH 30 and
insert the appropriate service identifier therein to offload ser-
vice function 16(1) to network infrastructure 20 for subse-
quent packets of the flow. Service function 16(2) may subse-
quently perform another service on packet 36 and send packet
36 back to network infrastructure 20. Service chain-flow
associator 46 may inspect cookie 24 in NSH 30, and deter-
mine, based on cookie 24, that packet 36 is associated with a
previously seen flow and service chain, even though the flow
tuple of the received packet indicates a different flow (e.g.,
due to NAT transformation). NSH offload module 48 may
inspect offload bit 32 and SF 1D 34 in NSH 30 and determine
that service function 16(1) has requested offload of its ser-
vices to network infrastructure 20 for subsequent packets of
the flow. NSH offload module 48 may compare network
header 38 before NAT transformation (e.g., based on infor-
mation stored from a previous encounter with packet 36) and
after NAT transformation, and identify the specific transfor-
mative policies. NSH offload module 48 may offload the NAT
execution to service module 50 within network infrastructure
20. Service module 50 may mark the flow to execute the NAT
(e.g., f1) on subsequent packets of the flow (e.g., by storing
flow state in service module 50), and forward packet 36 to the
next service node on the appropriate service chain.

Turning to FIG. 4, FIG. 4 is a simplified flow diagram
illustrating example operations 100 that may be associated

20

25

40

45

65

12

with embodiments of communication system 10. At 102,
network infrastructure 20 may receive packet 36. At 104, a
determination may be made at network infrastructure 20
whether the flow associated with packet 26 has been seen
previously. The determination may be based on the presence
or absence of cookie 24, NSH 30 in packet 36, or flow state
stored in service module 50 of network infrastructure 20.
Thus if cookie 24 is absent, the flow may be determined to be
a first encounter. If the flow has not been seen previously, at
106, network infrastructure 20 may generate cookie 24 asso-
ciating service chain with the flow of packet 36. At 108,
network infrastructure 20 may insert cookie 24 into NSH 30
of packet 36. At 110, offload bit 32 in NSH 30 may be
initialized. At 112, packet 36 may be transmitted to the next
service node on the service chain. Turning back to 104, if the
flow has been seen previously, at 114, network infrastructure
may identify the service chain associated with cookie 24 in
NSH 30.

Turning to FIG. 5, FIG. 5 is a simplified flow diagram
illustrating example operations 120 that may be associated
with embodiments of communication system 10. At 122,
example service node 16(1) may receive packet 36 with NSH
30. At 124, service node 14(1) may execute NAT service
function 16(1) on packet 36. At 126, service node 14(1) may
sent offload bit 32 in NSH 30 to offload NAT function to
network infrastructure 20. At 128, service node 14(1) may
transmit packet 36 to network infrastructure 20.

Turning to FIG. 6, FIG. 6 is a simplified flow diagram
illustrating example operations 130 that may be associated
with embodiments of communication system 10. At 132,
network infrastructure 20 may receive inbound packet 36
with NSH 30. At 134, network infrastructure 20 may identify
cookie 24 in NSH 30. At 136, network infrastructure 20 may
associate the flow with the service chain, for example, based
on association from previous encounter with packet 36. At
140, a determination may be made whether to execute the
NAT. For example, NAT may be executed at network infra-
structure 20 if the flow has been previously marked for off-
loading based on the value of offload bit 32 of a previously
encountered packet. If the flow is marked for offloading, at
142, network infrastructure 20 may execute the offloaded
transformative service function. Otherwise, if the flow is not
so marked (e.g., NAT has already been performed; packet 36
is a returning packet, not subject to NAT; offload bit 32 is not
set previously; etc.), at 144, oftload bit 32 may be interpreted.
If the value of offload bit 32 indicates offloading to network
infrastructure 20, the flow may be marked for offloading for
subsequent packets of the flow. At 146, packet 36 may be
transmitted to the next service node in the service chain.

Turning to FIG. 7, FIG. 7 is a simplified flow diagram
illustrating example operations 150 that may be associated
with embodiments of communication system 10. At 152,
when traffic (e.g., flows) passes through network infrastruc-
ture 20 post service delivery, network infrastructure 20 can
correlate the flow associated with packet 36 to the observed
flow prior to steering traffic to the service node (e.g., 14(1))
and correlate it to the service chain (e.g., 18) for that flow. At
154, re-classification of traffic may not be necessary, avoiding
starting another chain for servicing transformed flow. At 156,
to oftload the service function (e.g., 16(1)), the service node
(e.g., 14(1)) sets ‘O’ bit, namely offload bit 32 and optionally
specifies the service function (e.g., with SF 1D 34).

At 158, network infrastructure 20 can automatically detect
transformation on flow based on cookie correlation. At 160,
network infrastructure 20 updates flow state to mark flow as
requiring transformative service function in network infra-
structure 20 and not at service node (e.g., 14(1)). At 162,

US 9,363,183 B2

13

service nodes 14(1)-14(») may request offload of non-trans-
formative service functions as well. At 164, when substan-
tially all service functions (e.g., 16(1), 16(2)) at service node
(e.g., 14(1)) are offloaded, network infrastructure 20 may no
longer steer traffic to service node (e.g., 14(1)). At 166, opti-
mal service path saving latencies from not steering the traffic
to service nodes may be achieved; network infrastructure 20
can implement service functions in a specialized manner,
including implementation in hardware.

Note that in this Specification, references to various fea-
tures (e.g., elements, structures, modules, components, steps,
operations, characteristics, etc.) included in “one embodi-
ment”, “example embodiment”, “an embodiment”, “another
embodiment”, ‘“some embodiments”, “various embodi-
ments”, “other embodiments”, “alternative embodiment”,
and the like are intended to mean that any such features are
included in one or more embodiments of the present disclo-
sure, but may or may not necessarily be combined in the same
embodiments.

Note also that an ‘application’ as used herein this Specifi-
cation, can be inclusive of an executable file comprising
instructions that can be understood and processed on a com-
puter, and may further include library modules loaded during
execution, object files, system files, hardware logic, software
logic, or any other executable modules. Furthermore, the
words “optimize,” “optimization,” and related terms are terms
of art that refer to improvements in speed and/or efficiency of
a specified outcome and do not purport to indicate that a
process for achieving the specified outcome has achieved, or
is capable of achieving, an “optimal” or perfectly speedy/
perfectly efficient state.

In example implementations, at least some portions of the
activities outlined herein may be implemented in software in,
for example, network infrastructure 20, and service nodes
14(1)-14(N). In some embodiments, one or more of these
features may be implemented in hardware, provided external
to these elements, or consolidated in any appropriate manner
to achieve the intended functionality. The various network
elements (e.g., network infrastructure 20 and service nodes
14(1)-14(N)) may include software (or reciprocating soft-
ware) that can coordinate in order to achieve the operations as
outlined herein. In still other embodiments, these elements
may include any suitable algorithms, hardware, software,
components, modules, interfaces, or objects that facilitate the
operations thereof.

Furthermore, network infrastructure 20 and service nodes
14(1)-14(N) described and shown herein (and/or their asso-
ciated structures) may also include suitable interfaces for
receiving, transmitting, and/or otherwise communicating
data or information in a network environment. Additionally,
some of the processors and memory elements associated with
the various nodes may be removed, or otherwise consolidated
such that a single processor and a single memory element are
responsible for certain activities. In a general sense, the
arrangements depicted in the FIGURES may be more logical
in their representations, whereas a physical architecture may
include various permutations, combinations, and/or hybrids
of these elements. It is imperative to note that countless pos-
sible design configurations can be used to achieve the opera-
tional objectives outlined here. Accordingly, the associated
infrastructure has a myriad of substitute arrangements, design
choices, device possibilities, hardware configurations, soft-
ware implementations, equipment options, etc.

In some of example embodiments, one or more memory
elements (e.g., memory element 42) can store data used for
the operations described herein. This includes the memory
element being able to store instructions (e.g., software, logic,

10

15

20

25

30

35

40

45

50

55

60

65

14

code, etc.) in non-transitory media, such that the instructions
are executed to carry out the activities described in this Speci-
fication. A processor can execute any type of instructions
associated with the data to achieve the operations detailed
herein in this Specification. In one example, processors (e.g.,
processor 40) could transform an element or an article (e.g.,
data) from one state or thing to another state or thing. In
another example, the activities outlined herein may be imple-
mented with fixed logic or programmable logic (e.g., soft-
ware/computer instructions executed by a processor) and the
elements identified herein could be some type of a program-
mable processor, programmable digital logic (e.g., a field
programmable gate array (FPGA), an erasable programmable
read only memory (EPROM), an electrically erasable pro-
grammable read only memory (EEPROM)), an ASIC that
includes digital logic, software, code, electronic instructions,
flash memory, optical disks, CD-ROMs, DVD ROMs, mag-
netic or optical cards, other types of machine-readable medi-
ums suitable for storing electronic instructions, or any suit-
able combination thereof.

These devices may further keep information in any suitable
type of non-transitory storage medium (e.g., random access
memory (RAM), read only memory (ROM), field program-
mable gate array (FPGA), erasable programmable read only
memory (EPROM), electrically erasable programmable
ROM (EEPROM), etc.), software, hardware, or in any other
suitable component, device, element, or object where appro-
priate and based on particular needs. The information being
tracked, sent, received, or stored in communication system 10
could be provided in any database, register, table, cache,
queue, control list, or storage structure, based on particular
needs and implementations, all of which could be referenced
in any suitable timeframe. Any of the memory items dis-
cussed herein should be construed as being encompassed
within the broad term ‘memory element.” Similarly, any of the
potential processing elements, modules, and machines
described in this Specification should be construed as being
encompassed within the broad term ‘processor.’

It is also important to note that the operations and steps
described with reference to the preceding FIGURES illustrate
only some of the possible scenarios that may be executed by,
or within, the system. Some of these operations may be
deleted or removed where appropriate, or these steps may be
modified or changed considerably without departing from the
scope of the discussed concepts. In addition, the timing of
these operations may be altered considerably and still achieve
the results taught in this disclosure. The preceding opera-
tional flows have been offered for purposes of example and
discussion. Substantial flexibility is provided by the system in
that any suitable arrangements, chronologies, configurations,
and timing mechanisms may be provided without departing
from the teachings of the discussed concepts.

Although the present disclosure has been described in
detail with reference to particular arrangements and configu-
rations, these example configurations and arrangements may
be changed significantly without departing from the scope of
the present disclosure. For example, although the present
disclosure has been described with reference to particular
communication exchanges involving certain network access
and protocols, communication system 10 may be applicable
to other exchanges or routing protocols. Moreover, although
communication system 10 has been illustrated with reference
to particular elements and operations that facilitate the com-
munication process, these elements, and operations may be
replaced by any suitable architecture or process that achieves
the intended functionality of communication system 10.

US 9,363,183 B2

15

Numerous other changes, substitutions, variations, alter-
ations, and modifications may be ascertained to one skilled in
the art and it is intended that the present disclosure encompass
all such changes, substitutions, variations, alterations, and
modifications as falling within the scope of the appended
claims. In order to assist the United States Patent and Trade-
mark Office (USPTO) and, additionally, any readers of any
patent issued on this application in interpreting the claims
appended hereto, Applicant wishes to note that the Applicant:
(a) does not intend any of the appended claims to invoke
paragraph six (6) of 35 U.S.C. section 112 as it exists on the
date of the filing hereof unless the words “means for” or “step
for” are specifically used in the particular claims; and (b) does
not intend, by any statement in the specification, to limit this
disclosure in any way that is not otherwise reflected in the
appended claims.
What is claimed is:
1. A method, comprising:
receiving a packet at a network infrastructure in a network
comprising a plurality of service nodes interconnected
through the network infrastructure, wherein each ser-
vice node executes at least one service function;

identifying the packet as belonging to a first flow based on
a cookie in a network service header (NSH) of the
packet, wherein the NSH further indicates a service
chain comprising a sequence of service functions to be
executed on the packet at the service nodes, wherein a
flow tuple of the packet indicates a different second flow,
wherein at least one service function in the service chain
comprises network address translation (NAT) that
changes a first flow tuple identifying the first flow to a
second flow tuple identifying the second flow;

determining that a service function in the service chain is to
be offloaded from one of the service nodes to the net-
work infrastructure for subsequent packets of the first
flow, wherein the offloaded service function comprises
the NAT; and

executing the offloaded service function at the network

infrastructure for subsequent packets of the first flow.

2. The method of claim 1, wherein the first flow is identified
by a first flow tuple and the second flow is identified by a
different second flow tuple, wherein the flow tuple of the
packet received at the network infrastructure comprises the
second flow tuple.

3. The method of claim 1, further comprising:

receiving an initial packet of the first flow;

generating the cookie associating the first flow with the

service chain; and

inserting the cookie in the NSH of the packet and the

subsequent packets of the first flow.

4. The method of claim 1, wherein the network infrastruc-
ture determines a NAT policy for executing the offloaded
NAT by comparing the first flow tuple and the second flow
tuple.

5. The method of claim 1, wherein the determining that one
of'the service functions in the service chain is to be offloaded
is based on inspecting a value of an offload bit in the NSH.

6. The method of claim 1, wherein the service function to
be offloaded is identified by a service function identifier in the
NSH.

7. The method of claim 1, wherein Begin service functions
performed at one of the service nodes are offloaded to the
network infrastructure, wherein the service node is bypassed
for the subsequent packets of the first flow.

8. The method of claim 1, wherein the service chain is
assigned to the first flow by a service controller in the net-
work.

10

15

20

25

30

35

40

45

50

55

60

65

16

9. Non-transitory tangible media that includes instructions
for execution, which when executed by a processor, is oper-
able to perform operations comprising:
receiving a packet at a network infrastructure in a network
comprising a plurality of service nodes interconnected
through the network infrastructure, wherein each ser-
vice node executes at least one service function;

identifying the packet as belonging to a first flow based on
a cookie in a NSH of the packet, wherein the NSH
further indicates a service chain comprising a sequence
of service functions to be executed on the packet at the
service nodes, wherein a flow tuple of the packet indi-
cates a different second flow, wherein at least one service
function in the service chain comprises NAT that
changes a first flow tuple identifying the first flow to a
second flow tuple identifying the second flow;

determining that a service function in the service chain is to
be offloaded from one of the service nodes to the net-
work infrastructure for subsequent packets of the first
flow, wherein the offloaded service function comprises
the NAT; and

executing the offloaded service function at the network

infrastructure for subsequent packets of the first flow.

10. The media of claim 9, wherein the operations further
comprise:

receiving an initial packet of the first flow;

generating the cookie associating the first flow with the

service chain; and

inserting the cookie in the NSH of the packet and the

subsequent packets of the first flow.

11. The media of claim 9, wherein the network infrastruc-
ture determines a NAT policy for executing the offloaded
NAT by comparing the first flow tuple and the second flow
tuple.

12. The media of claim 9, wherein the first flow is identified
by a first flow tuple and the second flow is identified by a
different second flow tuple, wherein the flow tuple of the
packet received at the network infrastructure comprises the
second flow tuple.

13. The media of claim 9, wherein the service function to
be offloaded is identified by a service function identifier in the
NSH.

14. The media of claim 9, wherein the service chain is
assigned to the first flow by a service controller in the net-
work.

15. An apparatus, comprising:

a memory element for storing data; and

a processor, wherein the processor executes instructions

associated with the data, wherein the processor and the

memory element cooperate, such that the apparatus is

configured for:

receiving a packet at a network infrastructure in a net-
work comprising a plurality of service nodes inter-
connected through the network infrastructure,
wherein each service node executes at least one ser-
vice function;

identifying the packet as belonging to a first flow based
on a cookie in a NSH of the packet, wherein the NSH
further indicates a service chain comprising a
sequence of service functions to be executed on the
packet at the service nodes, wherein a flow tuple of the
packet indicates a different second flow, wherein at
least one service function in the service chain com-
prises network address translation (NAT) that
changes a first flow tuple identifying the first flow to a
second flow tuple identifying the second flow;

US 9,363,183 B2
17

determining that a service function in the service chain is
to be offloaded from one of the service nodes to the
network infrastructure for subsequent packets of the
first flow, wherein the offloaded service function com-
prises the NAT; and 5
executing the offloaded service function at the network
infrastructure for subsequent packets of the first flow.

16. The apparatus of claim 15, wherein the operations
further comprise:

receiving an initial packet of the first flow; 10

generating the cookie associating the first flow with the

service chain; and

inserting the cookie in the NSH of the packet and the

subsequent packets of the first flow.

17. The apparatus of claim 15, wherein the network infra- 15
structure determines a NAT policy for executing the offloaded
NAT by comparing the first flow tuple and the second flow
tuple.

18. The apparatus of claim 15, wherein the first flow is
identified by a first flow tuple and the second flow is identified 20
by a different second flow tuple, wherein the flow tuple of the
packet received at the network infrastructure comprises the
second flow tuple.

19. The apparatus of claim 15, wherein the service function
to be offloaded is identified by a service function identifier in 25
the NSH.

20. The apparatus of claim 15, wherein the service chain is
assigned to the first flow by a service controller in the net-
work.

30

